The University of Texas at Austin Dept. of Electrical and Computer Engineering
 Midterm \#1 Solution 2.0

Date: September 26, 2023
Course: EE 313 Evans

Name: \qquad
Last,
First

- This in-person exam is scheduled to last 75 minutes.
- Open books, open notes, and open class materials, including homework assignments and solution sets and previous midterm exams and solutions.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network.
- Please disable all wireless connections on your calculator(s) and computer system(s).
- Please mute all computer systems.
- Please turn off all phones.
- No headphones are allowed.
- All work should be performed on the midterm exam. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	25		Sampling Sinusoids
2	25		Fourier Series
3	26		Sampling
4	24		Spectrograms
Total	100		

Problem 1.1 Sampling Sinusoids. 25 points.
Consider the sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$
for continuous-time frequency f_{0} in Hz .
We are able to observe $x(t)$ for all time, i.e. for $-\infty<t<\infty$.
We sample $x(t)$ at a sampling rate of f_{s} in Hz to produce a discrete-time signal $x[n]$.
(a) Derive the formula for $x[n]$ by sampling $x(t)$ at a sampling rate of f_{s} in Hz. 6 points.

$$
\begin{aligned}
& x[n]=\left.x(t)\right|_{t=n T_{s}}=\cos \left(2 \pi f_{0}\left(n T_{s}\right)\right)=\cos \left(2 \pi f_{0} T_{s} n\right)=\cos \left(2 \pi \frac{f_{0}}{f_{s}} n\right) \\
& x[n]=\cos \left(\widehat{\omega}_{0} n\right)
\end{aligned}
$$

SPFirst Sec. 2-1 \& 2-3
SPFirst Sec. 4-1 \& 4-2
Homework Prob. 3.2
Lecture slides 5-5 \& 5-6
Lecture slides 6-4 to 6-7
Lecture 5 Notes Sep. 21st
Tune-Up Tuesday \#1
(b) Based on your answer in part (a), give a formula for the discrete-time frequency $\widehat{\omega}_{0}$ of $x[n]$ in terms of the continuous-time frequency f_{0} and sampling rate $f_{\text {s. }}$. Units of $\widehat{\omega}_{0}$ are in rad/sample. 6 points.

$$
\widehat{\omega}_{0}=2 \pi \frac{f_{0}}{f_{s}}
$$

(c) We choose the sampling rate f_{s} to satisfy the Sampling Theorem, i.e. $f_{s}>2 f_{0}$.
i. Give the range of continuous-time frequencies in Hz that can be correctly captured by sampling. Be sure to include negative, positive and zero frequencies. Justify your reasoning. 6 points.
Sampling Theorem says if $x(t)$ is sampled using a sampling rate $f_{s}>2 f_{0}$ where f_{0} is the maximum frequency in $x(t)$, then we can reconstruct $x(t)$ from its samples.
With $f_{s}>2 f_{0}$, we can divide both sides by 2 and obtain

$$
f_{0}<\frac{1}{2} f_{s}
$$

For every positive frequency component f_{0} in $x(t)=\cos \left(2 \pi f_{0} t\right)$, we have a $-f_{0}$ component because we can write cosine as a sum of two phasors (complex sinusoids):

$$
\cos \left(2 \pi f_{0} t\right)=\frac{1}{2} e^{-j 2 \pi f_{0} t}+\frac{1}{2} e^{j 2 \pi f_{0} t}
$$

The range of continuous-time frequencies in Hz that can be correctly captured by sampling is

$$
-\frac{1}{2} f_{s}<f<\frac{1}{2} f_{s}
$$

ii. Give the range of discrete-time frequencies that are represented when the Sampling Theorem is satisfied, i.e. $f_{s}>2 f_{0}$. Be sure to include negative, positive and zero frequencies. Justify your reasoning. 7 points
Using the result from (b), $\widehat{\omega}_{0}=2 \pi \frac{f_{0}}{f_{s}}$, we let $f_{0} \rightarrow-\frac{1}{2} f_{s}$ to obtain $\widehat{\boldsymbol{\omega}}_{0}=-\pi$ and $f_{0} \rightarrow \frac{1}{2} f_{s}$ to obtain $\widehat{\omega}_{0}=\pi$. So, the range is $-\pi<\widehat{\omega}_{0}<\pi$.

Problem 1.2 Fourier Series. 25 points.
Compute the Fourier series for a periodic pulse wave

$$
x(t)=\left[\begin{array}{ll}
1 & \text { for } 0 \leq|t|<\frac{\tau}{2} \\
0 & \text { for } \frac{\tau}{2} \leq|t|<\frac{T_{0}}{2}
\end{array}\right.
$$

The fraction of the time the pulse is "on" (i.e. has value 1) in each fundamental period T_{0} is $\frac{\tau}{T_{0}}$.

(a) Compute Fourier series coefficients a_{k} of $x(t)$ to represent $\quad x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}$
i. Compute a_{0}. 6 points. $\quad a_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t$
a_{0} is the average value of $x(t)$ which is the area of $x(t)$ over one fundamental period (which is the base times height of the rectangle $=\tau$) divided by \boldsymbol{T}_{0} :

$$
a_{0}=\frac{\tau}{T_{0}}
$$

ii. Compute a_{k} for $k \neq 0$. 12 points. $\quad a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k f_{0} t} d t=\frac{\mathbf{1}}{\boldsymbol{T}_{\mathbf{0}}} \int_{-\boldsymbol{T}_{\mathbf{0}} / \mathbf{2}}^{\boldsymbol{T}_{\mathbf{0}} / \mathbf{2}} \boldsymbol{x}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{j} 2 \pi k \boldsymbol{f}_{0} \boldsymbol{t}} \boldsymbol{d} \boldsymbol{t}$

$$
\begin{aligned}
& a_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{-\tau}(0) e^{-j 2 \pi k f_{0} t} d t+\frac{1}{T_{0}} \int_{-\tau / 2}^{\tau / 2}(1) e^{-j 2 \pi k f_{0} t} d t+\frac{1}{T_{0}} \int_{\tau / 2}^{T_{0} / 2}(0) e^{-j 2 \pi k f_{0} t} d t \\
& \left.a_{k}=\frac{1}{T_{0}} \int_{-\tau / 2}^{\tau / 2} e^{-j 2 \pi k f_{0} t} d t=-\frac{e^{-j 2 \pi k f_{0} t}}{j 2 \pi k f_{0} T_{\theta}}\right]_{-\tau / 2}^{\tau / 2}=\frac{e^{-j 2 \pi k f_{0}(\tau / 2)}-e^{-j 2 \pi k f_{0}(-\tau / 2)}}{j 2 \pi k}=\frac{\sin \left(\pi k \tau / T_{0}\right)}{\pi k}
\end{aligned}
$$

(b) Compute Fourier series coefficients b_{k} of $y(t)=2 x(t)-2 \frac{\tau}{T_{0}}$ to represent $\quad y(t)=\sum_{k=-\infty} b_{k} e^{j 2 \pi k f_{0} t}$
i. Compute $b_{0} .3$ points. $\quad b_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) d t$

$$
b_{0}=0
$$

$$
b_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}}\left(2 x(t)-2 \frac{\tau}{T_{0}}\right) d t=2\left(\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t\right)-\left(2 \frac{\tau}{T_{0}}\right)\left(\frac{1}{T_{0}} \int_{0}^{T_{0}} d t\right)=2 a_{0}-2 \frac{\tau}{T_{0}}=0
$$

ii. Compute b_{k} for $k \neq 0.4$ points. $\quad b_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) e^{-j 2 \pi k f_{0} t} d t \quad \boldsymbol{b}_{\boldsymbol{k}}=\mathbf{2} \boldsymbol{a}_{\boldsymbol{k}}$

$$
b_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}}\left(2 x(t)-2 \frac{\tau}{T_{0}}\right) e^{-j 2 \pi k f_{0} t} d t=2 \underbrace{\left(\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k f_{0} t} d t\right)}_{a_{k}}-2 \frac{\tau}{T_{0}} \underbrace{\left(\frac{1}{T_{0}} \int_{0}^{T_{0}} e^{-j 2 \pi k f_{0} t} d t\right)}_{0}
$$

$$
\left.\frac{1}{T_{0}} \int_{0}^{T_{0}} e^{-j 2 \pi k f_{0} t} d t=-\frac{e^{-j 2 \pi k f_{0} t}}{j 2 \pi k f_{0} T_{0}}\right]_{0}^{T_{0}}=\frac{e^{-j 2 \pi k f_{0} T_{\theta}}-e^{-j 2 \pi k f_{0}(0)}}{j 2 \pi k}=\frac{e^{-j 2 \pi k}-1}{j 2 \pi k}=0
$$

Problem 1.3. Sampling. 26 points.
 write it as a sum of cosines. 6 points.
$x(t)$ has frequencies $-f_{0}$ and $+f_{0}$ because $x(t)=\cos \left(2 \pi f_{0} t\right)=\frac{1}{2} e^{-j 2 \pi f_{0} t}+\frac{1}{2} e^{j 2 \pi f_{0} t}$
$y(t)=x^{2}(t)=\cos ^{2}\left(2 \pi f_{0} t\right)=\frac{1}{2}+\frac{1}{2} \cos \left(2 \pi\left(2 f_{0}\right) t\right)$
ii. Let $f_{0}=3000 \mathrm{~Hz}$. What negative, zero, and positive frequencies are present in $y(t)$? 6 points
$y(t)$ has continuous-time frequencies of $-2 f_{0}, 0$, and $+2 f_{0}$. Here, $f_{\text {max }}=2 f_{0}$.
For $f_{0}=3000 \mathrm{~Hz}, y(t)$ has frequencies $-6000 \mathrm{~Hz}, 0 \mathrm{~Hz}$, and 6000 Hz .
Here, $f_{\text {max }}=6000 \mathrm{~Hz}$.
(b) Let $x(t)=\cos \left(2 \pi f_{0} t\right)$ be a continuous-time signal for $-\infty<t<\infty$.
i. From the block diagram below, derive a formula for $y[n]$ and write it as a sum of cosines. 6 points

Due to sampling at sampling rate f_{s} where $f_{s}=\frac{1}{T_{s}}$ and T_{s} is the sampling time,

$$
x[n]=x(t)]_{t=n T_{s}}=\cos \left(2 \pi f_{0}\left(n T_{s}\right)\right)=\cos \left(2 \pi f_{0}\left(\frac{n}{f_{s}}\right)\right)=\cos \left(\left(2 \pi \frac{f_{0}}{f_{s}}\right) n\right)
$$

The discrete-time frequency is $\widehat{\boldsymbol{\omega}}_{0}=2 \pi \frac{f_{0}}{f_{s}}$ in rad/sample. $x[n]$ has frequencies $-\widehat{\omega}_{0}$ and $+\widehat{\omega}_{0}$ because $x[n]=\cos \left(\widehat{\omega}_{0} n\right)=\frac{1}{2} e^{-j \widehat{\omega}_{0} n}+\frac{1}{2} e^{j \widehat{\omega}_{0} n}$ $y[n]=x^{2}[n]=\cos ^{2}\left(\widehat{\omega}_{0} n\right)=\frac{1}{2}+\frac{1}{2} \cos \left(2 \widehat{\omega}_{0} n\right)$
ii. Let $f_{0}=3000 \mathrm{~Hz}$ and $f_{s}=8000 \mathrm{~Hz}$. What negative, zero and positive discrete-time frequencies are present in $y[n]$ between $-\pi \mathrm{rad} / \mathrm{sample}$ and $\pi \mathrm{rad} / \mathrm{sample}$? What are their corresponding continuous-time frequencies? 8 points.
Aliasing will occur because the maximum frequency in $y(t)$ is 6000 Hz and the sampling rate f_{s} does not satisfy $f_{s}>\mathbf{2} \boldsymbol{f}_{\text {max }}$.
For $x[n]=\cos \left(\widehat{\omega}_{0} n\right), \widehat{\omega}_{0}=2 \pi \frac{f_{0}}{f_{s}}=2 \pi \frac{3000 \mathrm{~Hz}}{8000 \mathrm{~Hz}}=2 \pi \frac{3}{8} \mathrm{rad} / \mathrm{sample}$
For $y[n]=\frac{1}{2}+\frac{1}{2} \cos \left(2 \widehat{\omega}_{0} n\right)$ and
$\cos \left(2 \widehat{\omega}_{0} n\right)=\cos \left(2\left(2 \pi \frac{3}{8}\right) n\right)=\cos \left(2 \pi \frac{6}{8} n\right)=\cos \left(2 \pi \frac{6}{8} n-2 \pi n\right)=\cos \left(-2 \pi \frac{2}{8} n\right)$
Due to aliasing, $y[n]$ has discrete-time frequencies of $-2 \pi \frac{2}{8}, 0$, and $2 \pi \frac{2}{8} \mathrm{rad} /$ sample
With $\widehat{\omega}_{1}=2 \pi f_{1} / f_{s}$ and hence $f_{1}=\left(\widehat{\omega}_{1} /(2 \pi)\right) f_{s}$, the corresponding continuoustime frequencies are $-2000 \mathrm{~Hz}, 0 \mathrm{~Hz}$, and 2000 Hz .

Problem 1.4. Spectrograms. 24 points.
Below are spectrograms (labeled with numbers 1-6) for six signals over the time interval $0 \leq t \leq 2 \mathrm{~s}$.
The vertical frequency axis for each spectrogram shows non-negative frequencies in units of Hz .
For each signal (a)-(f), identify the corresponding spectrogram and explain your reasoning.
Mini-Project \#1

Fall 2017 Midterm 1.4
SPFirst Sec. 3-7 \& 3-8

Lecture Slides 4-4 \& 4-12
Homework Prob. 2.3 \& 2.4

The spectrogram plots the magnitude of the frequency components vs. time in a signal. Phase is ignored.

The frequency components are related to the instantaneous frequencies in the signal, i.e., the frequency at a particular time. For $x(t)=\cos (\theta(t))$, the instantaneous frequency is $\frac{d \theta(t)}{d t}$ in rad/s.

The spectrograms on the right only show the positive frequency content; the negative frequencies would be a mirror image of positive frequencies.
(a) $x(t)=\cos \left(-250 \pi t^{2}\right)$. Instantaneous frequency is $\frac{\boldsymbol{d \theta}(\boldsymbol{t})}{\boldsymbol{d} \boldsymbol{t}}=\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{t}}\left(-\mathbf{2 5 0} \boldsymbol{\pi} \boldsymbol{t}^{\mathbf{2}}\right)=-\mathbf{5 0 0} \boldsymbol{\pi} \boldsymbol{t} \mathbf{r a d} / \mathrm{s}$ which is a line from 0 Hz to -500 Hz for $0 \leq t \leq 2 s$. Every negative frequency has a positive frequency, which would be a line from 0 Hz to 500 Hz . This is spectrogram (2).
(b) $x(t)=\cos \left(100 \pi t-\frac{\pi}{4}\right)+\cos (400 \pi t)$. Sum of 50 and 200 Hz components. Spectrogram (5).
(c) $x(t)=\cos \left(1000 \pi t-250 \pi t^{2}\right) . \quad \frac{d \theta(t)}{d t}=\frac{d}{d t}\left(\mathbf{1 0 0 0} \boldsymbol{\pi} \boldsymbol{t}-\mathbf{2 5 0} \boldsymbol{\pi} \boldsymbol{t}^{2}\right)=\mathbf{1 0 0 0 \pi} \mathbf{- 5 0 0 \pi t} \quad \mathrm{rad} / \mathrm{s}$ which is a line from 500 Hz to 0 Hz for $0 \leq t \leq 2 \mathrm{~s}$. This is spectrogram (4).
(d) $x(t)=\cos (100 \pi t) \cos (400 \pi t)$. Beat frequencies. Signal has sum and difference of 50 Hz and 200 Hz , i.e. 150 Hz and 250 Hz . This is spectrogram (1).

Tune-Up Tuesday \#3
SPFirst Sec. 3-2
(e) $x(t)=\cos \left(30 e^{2 t}\right)$. Instantaneous frequency is $\frac{d \theta(t)}{d t}=\frac{\boldsymbol{d}}{d t}\left(\mathbf{3 0} e^{2 t}\right)=\mathbf{6 0} \boldsymbol{e}^{\mathbf{2 t}} \mathbf{r a d} / \mathrm{s}$ which is an increasing exponential from 0 Hz to $60 e^{4} \mathrm{rad} / \mathrm{s}$ (about 521 Hz). This is spectrogram (3).
(f) Instantaneous frequency is $\frac{d \theta(t)}{d t}=\frac{d}{d t}\left(200 \pi t^{2}\right)=400 \pi t \mathrm{rad} / \mathrm{s}$ which is a line from 0 Hz to 400 Hz for $0 \leq t \leq 2 \mathrm{~s}$. This is spectrogram (6).

Generating spectrograms for signals in problem 1.4 (Matlab code on next page)


```
%%% Matlab code to generate spectrograms
fs = 2000;
Ts = 1/fs;
t = 0 : Ts : 2;
%%% Spectrogram parameters
blockSize = 1024;
overlap = blockSize - 1;
chirpBlockSize = 256;
chirpOverlap = round(3*chirpBlockSize/4);
%%% (a)
xa = cos(-250*pi*t.^2);
figure;
spectrogram(xa, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs, 'yaxis');
ylim( [0 0.5] );
%%% (b)
xb}=\operatorname{cos(100*pi*t - pi/4) + cos(400*pi*t);
figure;
spectrogram(xb, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
ylim( [0 0.5] );
%%% (C)
xc = cos(1000*pi*t - 250*pi*t.^2);
figure;
spectrogram(xc, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs, 'yaxis');
ylim( [0 0.5] );
%%% (d)
xd = cos(100*pi*t) .* cos(400*pi*t);
figure;
spectrogram(xd, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
ylim( [0 0.5] );
%%% (e)
xe = cos(30*exp(2*t));
figure;
spectrogram(xe, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
ylim( [0 0.5] );
%%% (f)
xf = cos(200*pi*t.^2);
figure;
spectrogram(xf, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs, 'yaxis');
ylim( [0 0.5] );
```

