The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm #1 Solution 2.0

Date: September 26, 2023 Course: EE 313 Evans

Name:

Last, First

This in-person exam is scheduled to last 75 minutes.

Open books, open notes, and open class materials, including homework assignments and
solution sets and previous midterm exams and solutions.

Calculators are allowed.

You may use any standalone computer system, i.e. one that is not connected to a network.
Please disable all wireless connections on your calculator(s) and computer system(s).
Please mute all computer systems.

Please turn off all phones.

No headphones are allowed.

All work should be performed on the midterm exam. If more space is needed, then use
the backs of the pages.

Fully justify your answers. If you decide to quote text from a source, please give the
quote, page humber and source citation.

Problem | Point Value | Your score Topic
1 25 Sampling Sinusoids
2 25 Fourier Series
3 26 Sampling
4 24 Spectrograms
Total 100




Problem 1.1 Sampling Sinusoids. 25 points. | Fall 2017, 2018 & 2021 Midterm 1.1

,,,,,,,,,,,,,,

Consider the sinusoidal signal x(t) = cos(2 7t f,, t) | SPFirst Sec. 2-1 & 2-3
for continuous-time frequency fo in Hz.

| SPFirst Sec. 4-1 & 4-2

We are able to observe x(t) for all time, i.e. for —oo < t < o0, " Homework Prob. 3.2

We sample x(t) at a sampling rate of fs in Hz to produce a discrete-time signal x[n]. ! Lecture slides 5-5 & 56 |
(a) Derive the formula for x[n] by sampling x(t) at a sampling rate of fs in Hz. 6 | Lecture slides 6-4 t0 6-7 |
points. £\ | Lecture 5 Notes Sep. 21st
x[n] = x(t)|t=nTs = cos(ano(nTs)) = cos(2nfTsn) = cos (27Tf n) Tune-Up Tuesday #1
s b e e e e =

x[n] = cos(@yn)

(b) Based on your answer in part (a), give a formula for the discrete-time frequency @, of x[n] in
terms of the continuous-time frequency fo and sampling rate fs. Units of @, are in rad/sample.
6 points.

(c) We choose the sampling rate f; to satisfy the Sampling Theorem, i.e. f;, > 2 f, .

i.  Give the range of continuous-time frequencies in Hz that can be correctly captured by
sampling. Be sure to include negative, positive and zero frequencies. Justify your
reasoning. 6 points.

Sampling Theorem says if x(t) is sampled using a sampling rate f; > 2 f, where f is
the maximum frequency in x(t), then we can reconstruct x(t) from its samples.

With f¢ > 2 f, , we can divide both sides by 2 and obtain

1
f0< Efs

For every positive frequency component fq in x(t) = cos(2 & f, t), we have a —f,
component because we can write cosine as a sum of two phasors (complex sinusoids):

1 1 .
cos(2m fy t) =3 e—121rfot_|_E ei2mfot

The range of continuous-time frequencies in Hz that can be correctly captured by
sampling is

1 1
_E fs < f < E fs
ii.  Give the range of discrete-time frequencies that are represented when the Sampling

Theorem is satisfied, i.e. f; > 2 f,, . Be sure to include negative, positive and zero
frequencies. Justify your reasoning. 7 points

Usmg the result from (b), @, = an— we let fo — —i fs to obtain @y, = —m and

fo— E fs to obtain @y = m. So, therangeis —w < @y < m .

Note: In order for the discrete-time frequency domain to be periodic with period 2, either —m or = would need to be included
in the interval (but not both). Several students had this more correct answer, but full marks were also given for - < &, < 7.




i Fall 2017 & 2018 Midterm 1.3 | SPFirst Sec. 3-3 to 3-6

SR I —t

Fourier Series for a Square Wave in SPFlrst Sec 3 6 1
Problem 1.2 Fourier Series. 25 points.

Compute the Fourier series for a periodic pulse wave

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T
1 forOS|t|<§

x(t) = - T,

0 for=<|t] <—

or- < [t] < 5
The fraction of the time the pulse is “on” (i.e. has value 1) in each fundamental period T, is Tl
0

x(1)
1

— f f f t f — —t—

o)

(a) Compute Fourier series coefficients a, of x(t) to represent x(t) = z a; el?™khot

i . 1 (To fe=—co
I.  Compute a,. 6 points. ap = T_J x(t) dt
0Jo

T
a, is the average value of x(t) which is the area of x(t) over one fundamental a, = T
period (which is the base times height of the rectangle = ) divided by T, : 0
To To/2 ]
ii. Compute a, for k # 0. 12 points.  a;, = —f x(t) e J2™kfot gt = —f x(t) e J2mkfot gt
To/2
1 (T 1 (To/2 :
ay = — (0) e /2mkfot gt + —j (1) e J2mkfot g + — (0) e J2mkfot g .
ToJ_1,/2 /2 sinc
function
i /2 _j _i _ .
gy = L[ poramkran gy _ €Y eTIID — e koY) sin(rk o/To)
ToJ) /2 J2rkfoTy| /2 j2nk tk
(b) Compute Fourier series coefficients by, of y(t) = 2 x(t) — 2 - to represent y(t) = Z by, e/2mfot
0
. . 1 (T —
i.  Compute b,. 3 points. = T_ofo y(t) dt by = 0
L (" (22 L (M ATEN
by = — (2x ¢ —2—) dt=z<—f x(t dt)—(Z—)(—f dt>—2a 2 -0
7Ty Jy T, ToJo To/ \To J, o "1,
1 (To .
ii. Compute by, for k # 0. 4 points. b, = 7). y(@) et dt | p, =2q,
0
To T j2mkfot 1 (7o 2mkfot T (1 o j2mkfot
b, = — (Zx(t)—Z—) e Jemo dt=2<—J x(t) e”Js™o dt>—2—<—J e /<m0 dt)
“ T Tyl To Ty J To\To Jo
ay 0
1 (To e—J2mkfot To e J2mkfeFo _ o—j2nkfo(0)  g—j2mk _ q
- e—]ZTl’kf()t dt = — = = = 0
Ty J, J2rkfoTy 0 j2mk j2nk



Problem 1.3. Sampling. 26 points.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(@) Let x(t) = cos(2mf,t) be a continuous-time signal for —oo < t < oo,

i.  From the block diagram below, derive a formula for y(t) and x(t) = (*2 >y
write it as a sum of cosines. 6 points.

x(t) has frequencies —f, and +f, because x(t) = cos(2mf,t) = %e‘fz”fot + %efz”fot

y(t) = x2(t) = cos?(2mfot) = %+% cos(2m(2fy)t)
ii. Let f,=3000Hz What negative, zero, and positive
frequencies are present in y(t)? 6 points
y(t) has continuous-time frequencies of —2 f,, 0, and +2 f,. Here, fiax = 2 fo-
For f, = 3000 Hz, y(t) has frequencies —6000 Hz, 0 Hz, and 6000 Hz.
Here, fmax = 6000 Hz.

(b) Let x(t) = cos(2mf,t) be a continuous-time signal for —co < t < oo,

i.  From the block diagram below, derive a formula for y[n]and x[n] = (*)2 | yin]
write it as a sum of cosines. 6 points

Due to sampling at sampling rate f, where f¢ = Tl and T is the sampling time,

x[n] = x(®)]; = o1, = cos(2nfo(nT,)) = cos <2nf0 (fl)) = cos <<2n?) n)

The discrete-time frequency is @y = Zn;"

in rad/sample.
x[n] has frequencies —@, and +&, because x[n] = cos(@yn) = %e‘f‘%" + %ef‘%"
1 1
y[n] = x%[n] = cos?(@yn) = >*5 cos(2@yn)

ii. Let f, =3000Hzand f;, =8000 Hz. What negative, zero and positive discrete-time
frequencies are present in y[n] between —r rad/sample and = rad/sample? What are their
corresponding continuous-time frequencies? 8 points.

Aliasing will occur because the maximum frequency in y(t) is 6000 Hz and the
sampling rate f, does not satisfy fg > 2 fax -

For x[n] = cos(@yn), @y = 20 = g 3000 He

3
= 2@ = rad/sample
fs 8000 Hz 8

For y[n] = % +% cos(2@yn) and | SPFirst Sec. 4-1 |

3 6 6 2
cos(2wgn) = cos (2 <21r—) n) = COoS <2n—n> = COS (Zn—n — 21rn> = COS (—2n—n>
8 8 8 8
Due to aliasing, y[n] has discrete-time frequencies of —an, 0, and an rad/sample

With @, = 2ntf,/fs and hence f; = (@1/(2m)) f , the corresponding continuous-
time frequencies are —2000 Hz, 0 Hz, and 2000 Hz.



Problem 1.4. Spectrograms. 24 points.
Below are spectrograms (labeled with numbers 1-6) for six signals over the time interval 0 < t < 2s.
The vertical frequency axis for each spectrogram shows non-negative frequencies in units of Hz.

For each signal (a)-(f), identify the corresponding spectrogram and explain your reasoning. :  jini-project #1

,,,,,,,, g
(1) (2) |

500 , = O NP = S— | Fall 2017 Midterm 1.4
400 ‘ : . 400 N
300 300 g :mi ------------------------------- .
200f , 200 v ' , Lecture Slides 4-4 & 4-12 |
100 e . 100 reenn - Homework Prob. 2.3 & 2.4
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The spectrogram plots the magnitude
of the frequency components vs. time
in a signal. Phase is ignored.
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The frequency components are
related to the instantaneous
frequencies in the signal, i.e., the

frequency at a particular time. For

200 200
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100 100

) ©) x(t) = cos(e(t)) the instantaneous
500 ’ ’ ’ v ’ 500 N ’ ¢ ' ’
frequency is —— ( ) in rad/s.
~ 400 400
z
Z 300 300 - .
The spectrograms on the right only
S 2 — 200 L.
E ‘ oo i | show the positive frequency content;
————————————— the negative frequenCieS would be a
% o0s | s 2 0 05 | s 2 mirror image of positive frequencies.

Time (s) Time (s)

(@) x(t) = cos(—250m t2). Instantaneous frequency is —— B(t) (—2501t t?) = —500mt rad/s

which is a line from 0 Hzto —500 Hzfor 0 < t < Zs Every negative frequency has a positive
frequency, which would be a line from 0 Hz to 500 Hz. This is spectrogram (2).

(b) x(t) = cos (100n t— %) + cos(400m t). Sum of 50 and 200 Hz components. Spectrogram (5).

(¢) x(t) = cos(10007 ¢ — 2507 £2). 2 = £ (1000 ¢ — 2507 t2) = 1000w — 5007t  rad/s
which is a line from 500 Hz to 0 Hz for 0 < t < 2s. This is spectrogram (4).

(d) x(t) = cos(100m t) cos(400m t). Beat frequencies. Signal has sum and Tune-Up Tuesday #3 |

difference of 50 Hz and 200 Hz, i.e. 150 Hz and 250 Hz. This is spectrogram (1). |  SPFirst Sec. 3-2

(e) x(t) = cos(30e?"). Instantaneous frequency is —— da(t) t(30e2‘) = 60e?* rad/s which is an

increasing exponential from 0 Hz to 60e* rad/s (about 521 Hz). This is spectrogram (3).

(F) Instantaneous frequency is —— de(t) (2001t t?) = 400mt rad/s which is a line from 0 Hz to

400 Hzfor 0 <t < 2s. ThIS |s spectrogram (6).



Generating spectrograms for signals in problem 1.4 (Matlab code on next page)
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(e) x(t) = cos(30e?t) (f) x(t) = cos(200m t?)



%$%% Matlab code to generate spectrograms
fs = 2000;

t=0:Ts : 2;
%$%% Spectrogram parameters

blockSize = 1024;

overlap = blockSize - 1;

chirpBlockSize = 256;

chirpOverlap = round (3*chirpBlockSize/4);

$%% (a)
xa = cos (=-250*pi*t."2);
figure;

spectrogram(xa, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs,
ylim( [0 0.5] );

%%% (b)
xb = cos(100*pi*t - pi/4) + cos(400*pi*t);
figure;

spectrogram(xb, hamming(blockSize), overlap, blockSize, fs, 'vaxis');
ylim( [0 0.5] );

$%% (c)
xc = cos (1000*pi*t - 250*pi*t."2);
figure;

spectrogram(xc, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs,
ylim( [0 0.5] );

$%% (d)
xd = cos(100*pi*t) .* cos(400*pi*t);
figure;

spectrogram(xd, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
ylim( [0 0.5] );

%% (e)
xe = cos(30*exp (2*t));
figure;

spectrogram(xe, hamming(blockSize), overlap, blockSize, fs, 'yaxis');
ylim( [0 0.5] );

$%% (f)
xf = cos(200*pi*t."2);
figure;

spectrogram(xf, hamming(chirpBlockSize), chirpOverlap, chirpBlockSize, fs,
ylim( [0 0.5] );

'vaxis');
'vaxis');
'vaxis');



